Jump to content

POSIX

From Wikipedia, the free encyclopedia
(Redirected from IEEE 1003)

Portable Operating System Interface (IEEE 1003)
AbbreviationPOSIX
StatusPublished
Year started1988; 37 years ago (1988)
Latest versionIEEE Std 1003.1-2024
2024; 1 year ago (2024)
OrganizationAustin Group (IEEE Computer Society, The Open Group, ISO/IEC JTC 1/SC 22/WG 15)
Related standardsISO/IEC 9945
DomainApplication programming interfaces
Websiteposix.opengroup.org

The Portable Operating System Interface (POSIX; IPA: /ˈpɒz.ɪks/[1]) is a family of standards specified by the IEEE Computer Society for maintaining compatibility between operating systems.[1] POSIX defines application programming interfaces (APIs), along with command line shells and utility interfaces, for software compatibility (portability) with variants of Unix and other operating systems.[1][2] POSIX is also a trademark of the IEEE.[1] POSIX is intended to be used by both application and system developers.[3]

Name

[edit]

Originally, the name "POSIX" referred to IEEE Std 1003.1-1988, released in 1988. The family of POSIX standards is formally designated as IEEE 1003 and the ISO/IEC standard number is ISO/IEC 9945.

The standards emerged from a project that began in 1984 building on work from related activity in the /usr/group association.[4] Richard Stallman suggested the name POSIX to the IEEE[5][6] instead of the former IEEE-IX.[7] The committee found it more easily pronounceable and memorable, and thus adopted it.[citation needed]

Overview

[edit]

Unix was selected as the basis for a standard system interface partly because it was "manufacturer-neutral". However, several major versions of Unix existed—so there was a need to develop a common-denominator system. The POSIX specifications for Unix-like operating systems originally consisted of a single document for the core programming interface, but eventually grew to 19 separate documents (POSIX.1, POSIX.2, etc.).[8] The standardized user command line and scripting interface were based on the UNIX System V shell.[9] Many user-level programs, services, and utilities (including awk, echo, ed) were also standardized, along with required program-level services (including basic I/O: file, terminal, and network). POSIX also defines a standard threading library API which is supported by most modern operating systems. In 2008, most parts of POSIX were combined into a single standard (IEEE Std 1003.1-2008, also known as POSIX.1-2008).

As of 2014, POSIX documentation is divided into two parts:

  • POSIX.1, 2013 Edition: POSIX Base Definitions, System Interfaces, and Commands and Utilities (which include POSIX.1, extensions for POSIX.1, Real-time Services, Threads Interface, Real-time Extensions, Security Interface, Network File Access and Network Process-to-Process Communications, User Portability Extensions, Corrections and Extensions, Protection and Control Utilities and Batch System Utilities. This is POSIX 1003.1-2008 with Technical Corrigendum 1.)
  • POSIX Conformance Testing: A test suite for POSIX accompanies the standard: VSX-PCTS or the VSX POSIX Conformance Test Suite.[10]

The development of the POSIX standard takes place in the Austin Group (a joint working group among the IEEE, The Open Group, and the ISO/IEC JTC 1/SC 22/WG 15).

Versions

[edit]

Parts before 1997

[edit]

Before 1997, POSIX comprised several standards:

Versions after 1997

[edit]

After 1997, the Austin Group developed the POSIX revisions. The specifications are known under the name Single UNIX Specification, before they become a POSIX standard when formally approved by the ISO.

POSIX.1-2001 (with two TCs)

[edit]

POSIX.1-2001 (or IEEE Std 1003.1-2001) equates to the Single UNIX Specification, version 3 minus X/Open Curses.[12]

This standard consisted of:

  • the Base Definitions, Issue 6,
  • the System Interfaces and Headers, Issue 6,
  • the Commands and Utilities, Issue 6.

IEEE Std 1003.1-2004 involved a minor update of POSIX.1-2001. It incorporated two minor updates or errata referred to as Technical Corrigenda (TCs).[13] Its contents are available on the web.[14]

POSIX.1-2008 (with two TCs)

[edit]

Base Specifications, Issue 7 (or IEEE Std 1003.1-2008, 2016 Edition).[15]

This standard consists of:

  • the Base Definitions, Issue 7,
  • the System Interfaces and Headers, Issue 7,
  • the Commands and Utilities, Issue 7,
  • the Rationale volume.

POSIX.1-2017

[edit]

IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008) - IEEE Standard for Information Technology—Portable Operating System Interface (POSIX(R)) Base Specifications, Issue 7 is available from either The Open Group or IEEE. It is technically identical to POSIX.1-2008 with Technical Corrigenda 1 and 2 applied. Its contents are available on the web.[16]

POSIX.1-2024

[edit]

IEEE Std 1003.1-2024 - IEEE Standard for Information Technology—Portable Operating System Interface (POSIX(R)) Base Specifications, Issue 8 was published on 14 June 2024.[15] Its contents are available on the web.[17]

Controversies

[edit]

512- vs 1024-byte blocks

[edit]

POSIX mandates 512-byte default block sizes for the df and du utilities, reflecting the typical size of blocks on disks. When Richard Stallman and the GNU team were implementing POSIX for the GNU operating system, they objected to this on the grounds that most people think in terms of 1024 byte (or 1 KiB) blocks. The environment variable POSIX_ME_HARDER was introduced to allow the user to force the standards-compliant behaviour.[18] The variable name was later changed to POSIXLY_CORRECT.[19] This variable is now also used for a number of other behaviour quirks.

POSIX-oriented operating systems

[edit]

Depending upon the degree of compliance with the standards, one can classify operating systems as fully or partly POSIX compatible.

POSIX-certified

[edit]

Current versions of the following operating systems have been certified to conform to one or more of the various POSIX standards. This means that they passed the automated conformance tests[20] and their certification has not expired and the operating system has not been discontinued.[21][22]

Formerly POSIX-certified

[edit]

Some versions of the following operating systems had been certified to conform to one or more of the various POSIX standards. This means that they passed the automated conformance tests. The certification has expired and some of the operating systems have been discontinued.[21]

Mostly POSIX-compliant

[edit]

The following are not certified as POSIX compliant yet comply in large part:

POSIX for Microsoft Windows

[edit]
  • Cygwin provides a largely POSIX-compliant development and run-time environment for Microsoft Windows.
  • MinGW, a fork of Cygwin, provides a less POSIX-compliant development environment and supports compatible C-programmed applications via Msvcrt, Microsoft's old Visual C runtime library.
  • libunistd, a largely POSIX-compliant development library originally created to build the Linux-based C/C++ source code of CinePaint as is in Microsoft Visual Studio. A lightweight implementation that has POSIX-compatible header files that map POSIX APIs to call their Windows API counterparts.[45]
  • Microsoft POSIX subsystem, an optional Windows subsystem included in Windows NT-based operating systems up to Windows 2000. It supported POSIX.1 as it stood in the 1990 revision, without threads or sockets.
  • Interix, originally OpenNT by Softway Systems, Inc., is an upgrade and replacement for Microsoft POSIX subsystem that was purchased by Microsoft in 1999. It was initially marketed as a stand-alone add-on product and then later included as a component in Windows Services for UNIX (SFU) and finally incorporated as a component in Windows Server 2003 R2 and later Windows OS releases under the name "Subsystem for UNIX-based Applications" (SUA); later made deprecated in 2012 (Windows 8)[46] and dropped in 2013 (2012 R2, 8.1). It enables full POSIX compliance for certain Microsoft Windows products.[citation needed]
  • Windows Subsystem for Linux, also known as WSL, is a compatibility layer for running Linux binary executables natively on Windows 10 and 11 using a Linux image such as Ubuntu, Debian, or OpenSUSE among others, acting as an upgrade and replacement for Windows Services for UNIX. It was released in beta in April 2016. The first distribution available was Ubuntu.
  • UWIN from AT&T Research implements a POSIX layer on top of the Win32 APIs.
  • MKS Toolkit, originally created for MS-DOS, is a software package produced and maintained by MKS Inc. that provides a Unix-like environment for scripting, connectivity and porting Unix and Linux software to both 32- and 64-bit Microsoft Windows systems. A subset of it was included in the first release of Windows Services for UNIX (SFU) in 1998.[47][48]
  • Windows C Runtime Library and Windows Sockets API implement commonly used POSIX API functions for file, time, environment, and socket access,[49] although the support remains largely incomplete and not fully interoperable with POSIX-compliant implementations.[50][51][discuss]

POSIX for OS/2

[edit]

Mostly POSIX compliant environments for OS/2:

  • emx+gcc – largely POSIX compliant

POSIX for DOS

[edit]

Partially POSIX compliant environments for DOS include:

  • emx+gcc – largely POSIX compliant
  • DJGPP – partially POSIX compliant
  • DR-DOS multitasking core via EMM386 /MULTI – a POSIX threads frontend API extension is available

Compliant via compatibility layer

[edit]

The following are not officially certified as POSIX compatible, but they conform in large part to the standards by implementing POSIX support via some sort of compatibility feature (usually translation libraries, or a layer atop the kernel). Without these features, they are usually non-compliant.

See also

[edit]

References

[edit]
  1. ^ a b c d "POSIX.1 FAQ". The Open Group. 13 June 2020. Retrieved 20 February 2023.
  2. ^ "IEEE 1003.1-2024". IEEE Standards Association.
  3. ^ "Introduction". The Open Group Base Specifications Issue 7, 2018 edition. Retrieved 22 July 2021.
  4. ^ "JimIsaak - POSIX Impact". sites.google.com. Retrieved 15 September 2022.
  5. ^ "A Backgrounder on IEEE Std 1003.1". Footnotes.
  6. ^ "The origin of the name POSIX". stallman.org. Retrieved 26 September 2024.
  7. ^ Stoughton, Nicholas. "An Update On Standards". ;login:.
  8. ^ PASC Status (including POSIX) (Report). IEEE Computer Society. 4 December 2003. Retrieved 26 September 2024.
  9. ^ "Shell Command Language - The Open Group Base Specifications Issue 7, 2013 Edition". Retrieved 28 April 2020.
  10. ^ "Test Suites VSX-PCTS2003". The Open Group.
  11. ^ "librt(3LIB)". docs.oracle.com. man pages section 3: Library Interfaces and Headers. Oracle Corporation. 4 August 1998. Retrieved 18 February 2016. librt, libposix4- POSIX.1b Realtime Extensions library [...] librt is the preferred name for this library. The name libposix4 is maintained for backward compatibility and should be avoided. Functions in this library provide most of the interfaces specified by the POSIX.1b Realtime Extension.
  12. ^ "The Single UNIX Specification Version 3 - Overview". unix.org.
  13. ^ "IEEE Std 1003.1" (2004 ed.). Unix.org. Retrieved 26 July 2009.
  14. ^ "Base Specifications, Issue 6" (2004 ed.). The Open Group. Retrieved 20 July 2024..
  15. ^ a b "The Austin Common Standards Revision Group". The Open Group. Retrieved 20 July 2024.
  16. ^ "Base Specifications, Issue 7, 2018 Edition" (2018 ed.). The Open Group. Retrieved 20 July 2024.
  17. ^ "Base Specifications, Issue 8" (2024 ed.). The Open Group..
  18. ^ Stallman, Richard (28 August 1991). "Democracy Triumphs in Disk Units". Newsgroupgnu.announce. Usenet: 9108281809.AA03552@mole.gnu.ai.mit.edu – via Google Groups.
  19. ^ "GNU Coding Standards". GNU.
  20. ^ "POSIX Certified by IEEE and The Open Group - Program Guide". Section 2, How to Achieve Certification. Retrieved 26 September 2024.
  21. ^ a b "POSIX Certified by IEEE and The Open Group - Program Guide". Section 4, Renewals and Certified Product Updates. Retrieved 26 September 2024.
  22. ^ "Certified Products by Company". The Open Group. n.d. Retrieved 22 January 2022.
  23. ^ a b "IBM". The Open Group. Retrieved 23 January 2022.
  24. ^ "Hewlett-Packard". The Open Group. Retrieved 26 January 2014.
  25. ^ a b "POSIX Certification Register". The Open Group. Retrieved 22 August 2024.
  26. ^ "The Open Brand - Register of Certified Products". Register of Open Branded Products. The Open Group. Retrieved 20 May 2015.
  27. ^ "Apple Inc". Register of Open Branded Products. The Open Group. Retrieved 20 May 2015.
  28. ^ "SCO OpenServer Release 5". The Open Group. 3 May 1995. Retrieved 24 December 2021.
  29. ^ "UnixWare ® 7.1.3 and later". The Open Group. 16 May 2003. Retrieved 24 December 2021.
  30. ^ "Huawei Technology Co., Ltd". The Open Group. Retrieved 26 May 2017.
  31. ^ "Inspur Co., Ltd". The Open Group. Retrieved 26 May 2017.
  32. ^ "Silicon Graphics, Inc". The Open Group. Retrieved 26 January 2014.
  33. ^ "The Open Brand - Register of Certified Products". Open Group. 23 July 2003. Archived from the original on 2 August 2003. Retrieved 23 January 2022.
  34. ^ "QNX Achieves New POSIX Certification" (Press release). QNX. 8 April 2008. Retrieved 16 January 2016.
  35. ^ "Oracle Corporation". The Open Group. Archived from the original on 12 July 2017. Retrieved 26 January 2014.
  36. ^ "Hewlett-Packard". The Open Group. Archived from the original on 9 July 2014. Retrieved 26 January 2014.
  37. ^ "Huawei LiteOS / LiteOS". Gitee. Huawei. Retrieved 23 May 2024.
  38. ^ Schweikhardt, Jens. "FreeBSD POSIX 2001 Utility Compliance". FreeBSD.
  39. ^ Mark Halper (7 November 1994). "HP 3000 sales catch market by surprise". Computerworld. Vol. 28, no. 4. IDG Enterprise.
  40. ^ Solter, Nicholas A.; Jelinek, Jerry; Miner, David (21 March 2011). OpenSolaris Bible. John Wiley & Sons. ISBN 9781118080313.
  41. ^ Lamie, Bill; Taubinger, Rafael (15 June 2023). "RTOS with standard POSIX pthreads API: a complement to embedded Linux". Embedded.com. Retrieved 13 September 2023.
  42. ^ "OpenVOS POSIX.1: Conformance Guide". Status Technologies. Retrieved 26 November 2021.
  43. ^ ULTRIX POSIX Conformance Document (PDF). Digital. June 1990. Retrieved 13 December 2021.
  44. ^ "POSIX Support". Zephyr documentation. Retrieved 7 March 2023.
  45. ^ Rowe, Robin (8 September 2022). "libunistd". Github. Retrieved 18 February 2023. If you want to build single codebase C++ code to run on Windows, Linux and MacOS, you need this for Windows
  46. ^ "Features Removed or Deprecated in Windows Server 2012". Microsoft Docs. 31 August 2016.
  47. ^ "Windows NT Services for UNIX Add-On Pack". Microsoft. Archived from the original on 8 May 1999.
  48. ^ "MKS Solves Enterprise Interoperability Challenges" (Press release). Archived from the original on 28 April 1999.
  49. ^ "Deprecated CRT Functions". Microsoft Docs. 15 October 2009. Retrieved 23 July 2022.
  50. ^ "Porting Socket Applications to Winsock". Microsoft Docs. 7 January 2021. Retrieved 23 July 2022.
  51. ^ "Winsock Programmer's FAQ Articles: BSD Sockets Compatibility". Warren Young. 31 August 2015. Retrieved 8 October 2015.
  52. ^ "Aminet - dev/C/Vbcc_PosixLib.lha".
  53. ^ "Programming IBM PASE for i" (PDF). ibm.com. IBM. 2013. Retrieved 25 November 2021.
  54. ^ "FIPS 151-2 Conformance Validated Products List". Perennial Test Lab. Retrieved 14 August 2022.
  55. ^ "APE — ANSI/POSIX Environment". Plan 9 documents. Bell Labs. Archived from the original on 1 June 2017.
  56. ^ Realtime Products Technical Summary, Fifth Edition (PDF). Digital Equipment Corporation. December 1992. Retrieved 8 December 2021.
  57. ^ "Chapter 29 - POSIX Compatibility". MS Windows NT Workstation Resource Kit. Microsoft. Archived from the original on 15 January 2008.
[edit]